锐湃尔™应用人类基因组中的重复元件(Alu元件及LINE-1转座子)、人源核酸内切酶以及逆转录酶ORF2p,整个技术完全为人源,锐湃尔™可识别基因组上待插入序列上游的长序列片段并剪切基因组靶位点的DNA单链,同时将含有待插入序列的RNA转化为双链DNA,最终经同源重组将待插入序列插入至基因组中。该技术由于仅在待插入位点处形成双链DNA、识别序列长以及完全为人源等特点,使得其具有高靶向性、低脱靶率及极低抗原性等优势,并可以较高效率向基因组插入长片段序列。同时,该技术所采用的核酸内切酶仅切开基因组单链,此后通过同源重组进行序列插入,极大的避免了使基因组发生双链断裂的风险,因此具有较高的安全性。
锐湃尔TM技术基因编辑过程简述
含有待插入序列、靶位点上游序列及靶位点下游序列信息的RNA被由与其相连的重复元件及其所形成的特定二级结构所招募的内切酶及逆转录酶ORF2p逆转录转化为ssDNA。此后该含有待插入序列、靶位点上游序列及靶位点下游序列信息的ssDNA以序列特异性结合于基因组上靶位点处,连于ssDNA的3’端的ORF2p在ssDNA上靶位点上游序列与基因组上靶位点上游序列准确匹配后方可滑动至靶位点(该机制使得锐湃尔TM技术具有高靶向性的特点),在ssDNA在基因组靶位点处形成特定“Ω”二级结构的条件下,ORF2p切开基因组靶位点并以基因组单链为引物合成ssDNA的另一条链,转变为dsDNA。正因仅在基因组靶位点处方可形成具有同源重组潜能的dsDNA,且不产生双链断裂,锐湃尔TM技术才更为安全。此后在ORF2p的辅助下,dsDNA上的待插入序列可于细胞分裂时借助同源重组被插入至靶位点中,进而达到基因编辑的目的。锐湃尔TM技术所用序列和蛋白均取自人体,为完全人源的基因编辑技术,无需担心免疫反应;且锐湃尔TM技术基于人体固有的基因变化机制“CNV延伸机制”,安全性更有保障。
锐湃尔™技术申请发明专利,发明创造名称:基因转录框架、载体系统、基因组序列编辑方法及应用;申请号: 202110089068.1
锐湃尔™技术的基本理论“CNV延伸机制”发表于“frontiers in Cell and Developmental Biology”(目前IF:6.684)
CNV延伸理论合理的解释了基因组上广泛存在的内含子、短散在核元件和长散在核元件的存在意义;
同时对基因组上一系列机制尚不明朗的变化现象如胚胎和肿瘤中与相应基因表达相关的拷贝数变化、亨廷顿舞蹈症及脆性X综合症中与相应基因表达相关的三联核苷酸重复增加及仅在具有增殖潜能的免疫细胞中出现的不完整HIV基因组对高表达基因中Alu序列的偏好性插入等提出了更为合理的解释
锐湃尔™技术申请PCT,PCT申请号: PCT/CN2021/134710
1.Sullivan JC, Reitzel AM, Finnerty JR. A high percentage of introns in human genes were present early in animal evolution: evidence from the basal metazoan Nematostella vectensis. Genome Inform. 2006;17(1):219-229.
2.Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome [published correction appears in Nature 2001 Aug 2;412(6846):565] [published correction appears in Nature 2001 Jun 7;411(6838):720. Szustakowki, J [corrected to Szustakowski, J]]. Nature. 2001;409(6822):860-921. doi:10.1038/35057062
1.Streva VA, Faber ZJ, Deininger PL. LINE-1 and Alu retrotransposition exhibit clonal variation. Mob DNA. 2013;4(1):16. Published 2013 Jun 3. doi:10.1186/1759-8753-4-16
2.de Andrade A, Wang M, Bonaldo MF, Xie H, Soares MB. Genetic and epigenetic variations contributed by Alu retrotransposition. BMC Genomics. 2011;12:617. Published 2011 Dec 20. doi:10.1186/1471-2164-12-617
1.Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome [published correction appears in Nature 2001 Aug 2;412(6846):565] [published correction appears in Nature 2001 Jun 7;411(6838):720. Szustakowki, J [corrected to Szustakowski, J]]. Nature. 2001;409(6822):860-921. doi:10.1038/35057062
2.Iafrate AJ, Feuk L, Rivera MN, et al. Detection of large-scale variation in the human genome. Nat Genet.2004;36(9):949-951. doi:10.1038/ng1416
3.Sebat J, Lakshmi B, Troge J, et al. Large-scale copy number polymorphism in the human genome. Science. 2004;305(5683):525-528. doi:10.1126/science.1098918
4.Redon R, Ishikawa S, Fitch KR, et al. Global variation in copy number in the human genome. Nature. 2006;444(7118):444-454. doi:10.1038/nature05329
5.Korbel JO, Urban AE, Affourtit JP, et al. Paired-end mapping reveals extensive structural variation in the human genome. Science. 2007;318(5849):420-426. doi:10.1126/science.1149504
1.Liang Q, Conte N, Skarnes WC, Bradley A. Extensive genomic copy number variation in embryonic stem cells. Proc Natl Acad Sci U S A. 2008;105(45):17453-17456. doi:10.1073/pnas.0805638105
1.Martin SL. The ORF1 protein encoded by LINE-1: structure and function during L1 retrotransposition. J Biomed Biotechnol. 2006;2006(1):45621. doi:10.1155/JBB/2006/45621
2.Adeniyi-Jones S, Zasloff M. Transcription, processing and nuclear transport of a B1 Alu RNA species complementary to an intron of the murine alpha-fetoprotein gene. Nature. 1985;317(6032):81-84. doi:10.1038/317081a0
3.Kerachian MA, Kerachian M. Long interspersed nucleotide element-1 (LINE-1) methylation in colorectal cancer. Clin Chim Acta. 2019;488:209-214. doi:10.1016/j.cca.2018.11.018
4.Whongsiri P, Goering W, Lautwein T, et al. Many Different LINE-1 Retroelements Are Activated in Bladder Cancer. Int J Mol Sci. 2020;21(24):9433. Published 2020 Dec 11. doi:10.3390/ijms21249433
1.Percharde M, Lin CJ, Yin Y, et al. A LINE1-Nucleolin Partnership Regulates Early Development and ESC Identity. Cell. 2018;174(2):391-405.e19. doi:10.1016/j.cell.2018.05.043
1.Cohn LB, Silva IT, Oliveira TY, et al. HIV-1 integration landscape during latent and active infection. Cell. 2015;160(3):420-432. doi:10.1016/j.cell.2015.01.020
2.Maldarelli F, Wu X, Su L, et al. HIV latency. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Science. 2014;345(6193):179-183. doi:10.1126/science.1254194
3.Wagner TA, McLaughlin S, Garg K, et al. HIV latency. Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection. Science. 2014;345(6196):570-573. doi:10.1126/science.1256304
图片取自A Mechanism Leading to Changes in Copy Number Variations Affected by Transcriptional Level Might Be Involved in Evolution, Embryonic Development, Senescence, and Oncogenesis Mediated by Retrotransposons.
1.Cohn LB, Silva IT, Oliveira TY, et al. HIV-1 integration landscape during latent and active infection. Cell. 2015;160(3):420-432. doi:10.1016/j.cell.2015.01.020
2.Maldarelli F, Wu X, Su L, et al. HIV latency. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Science. 2014;345(6193):179-183. doi:10.1126/science.1254194
3.Wagner TA, McLaughlin S, Garg K, et al. HIV latency. Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection. Science. 2014;345(6196):570-573. doi:10.1126/science.1256304
图片取自A Mechanism Leading to Changes in Copy Number Variations Affected by Transcriptional Level Might Be Involved in Evolution, Embryonic Development, Senescence, and Oncogenesis Mediated by Retrotransposons.
1.Zhang Y, Zhang XO, Chen T, et al. Circular intronic long noncoding RNAs. Mol Cell. 2013;51(6):792-806. doi:10.1016/j.molcel.2013.08.017
1.Panda AC, De S, Grammatikakis I, et al. High-purity circular RNA isolation method (RPAD) reveals vast collection of intronic circRNAs. Nucleic Acids Res. 2017;45(12):e116. doi:10.1093/nar/gkx297
1.Burnette JM, Miyamoto-Sato E, Schaub MA, Conklin J, Lopez AJ. Subdivision of large introns in Drosophila by recursive splicing at nonexonic elements. Genetics. 2005;170(2):661-674. doi:10.1534/genetics.104.039701
2.Kelly S, Georgomanolis T, Zirkel A, et al. Splicing of many human genes involves sites embedded within introns. Nucleic Acids Res. 2015;43(9):4721-4732. doi:10.1093/nar/gkv386
3.Taggart AJ, DeSimone AM, Shih JS, Filloux ME, Fairbrother WG. Large-scale mapping of branchpoints in human pre-mRNA transcripts in vivo. Nat Struct Mol Biol. 2012;19(7):719-721. Published 2012 Jun 17. doi:10.1038/nsmb.2327
1.Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing [published correction appears in Nat Genet. 2009 Jun;41(6):762]. Nat Genet. 2008;40(12):1413-1415. doi:10.1038/ng.259
2.Wang ET, Sandberg R, Luo S, et al. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456(7221):470-476. doi:10.1038/nature07509
1.Li X, Manley JL. Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell. 2005;122(3):365-378. doi:10.1016/j.cell.2005.06.008
1.Shibata Y, Kumar P, Layer R, et al. Extrachromosomal microDNAs and chromosomal microdeletions in normal tissues [published correction appears in Science. 2012 Jun 22;336(6088):1506]. Science. 2012;336(6077):82-86. doi:10.1126/science.1213307
2.Dillon LW, Kumar P, Shibata Y, et al. Production of Extrachromosomal MicroDNAs Is Linked to Mismatch Repair Pathways and Transcriptional Activity. Cell Rep. 2015;11(11):1749-1759. doi:10.1016/j.celrep.2015.05.020
1.Evenson DP, Darzynkiewicz Z, Melamed MR. Relation of mammalian sperm chromatin heterogeneity to fertility. Science. 1980;210(4474):1131-1133. doi:10.1126/science.7444440
1.Maraia RJ, Driscoll CT, Bilyeu T, Hsu K, Darlington GJ. Multiple dispersed loci produce small cytoplasmic Alu RNA. Mol Cell Biol. 1993;13(7):4233-4241. doi:10.1128/mcb.13.7.4233-4241.1993
2.Chu WM, Liu WM, Schmid CW. RNA polymerase III promoter and terminator elements affect Alu RNA expression. Nucleic Acids Res. 1995;23(10):1750-1757. doi:10.1093/nar/23.10.1750
1.Mathias SL, Scott AF, Kazazian HH Jr, Boeke JD, Gabriel A. Reverse transcriptase encoded by a human transposable element. Science. 1991;254(5039):1808-1810. doi:10.1126/science.1722352
2.Wallace N, Wagstaff BJ, Deininger PL, Roy-Engel AM. LINE-1 ORF1 protein enhances Alu SINE retrotransposition. Gene. 2008;419(1-2):1-6. doi:10.1016/j.gene.2008.04.007
1.Mathias SL, Scott AF, Kazazian HH Jr, Boeke JD, Gabriel A. Reverse transcriptase encoded by a human transposable element. Science. 1991;254(5039):1808-1810. doi:10.1126/science.1722352
2.Wallace N, Wagstaff BJ, Deininger PL, Roy-Engel AM. LINE-1 ORF1 protein enhances Alu SINE retrotransposition. Gene. 2008;419(1-2):1-6. doi:10.1016/j.gene.2008.04.007
3.Häsler J, Strub K. Alu elements as regulators of gene expression [published correction appears in Nucleic Acids Res. 2007;35(4):1389]. Nucleic Acids Res. 2006;34(19):5491-5497. doi:10.1093/nar/gkl706
1.Esnault C, Maestre J, Heidmann T. Human LINE retrotransposons generate processed pseudogenes. Nat Genet. 2000;24(4):363-367. doi:10.1038/74184
2.Dewannieux M, Esnault C, Heidmann T. LINE-mediated retrotransposition of marked Alu sequences. Nat Genet. 2003;35(1):41-48. doi:10.1038/ng1223
1.Gottipati P, Cassel TN, Savolainen L, Helleday T. Transcription-associated recombination is dependent on replication in Mammalian cells. Mol Cell Biol. 2008;28(1):154-164. doi:10.1128/MCB.00816-07
1.Guo H, Karberg M, Long M, Jones JP 3rd, Sullenger B, Lambowitz AM. Group II introns designed to insert into therapeutically relevant DNA target sites in human cells. Science. 2000;289(5478):452-457. doi:10.1126/science.289.5478.452
2.Guo H, Zimmerly S, Perlman PS, Lambowitz AM. Group II intron endonucleases use both RNA and protein subunits for recognition of specific sequences in double-stranded DNA. EMBO J. 1997;16(22):6835-6848. doi:10.1093/emboj/16.22.6835
3.Jiménez-Zurdo JI, García-Rodríguez FM, Barrientos-Durán A, Toro N. DNA target site requirements for homing in vivo of a bacterial group II intron encoding a protein lacking the DNA endonuclease domain. J Mol Biol. 2003;326(2):413-423. doi:10.1016/s0022-2836(02)01380-3
4.Singh NN, Lambowitz AM. Interaction of a group II intron ribonucleoprotein endonuclease with its DNA target site investigated by DNA footprinting and modification interference. J Mol Biol. 2001;309(2):361-386. doi:10.1006/jmbi.2001.4658
1.Cousineau B, Lawrence S, Smith D, Belfort M. Retrotransposition of a bacterial group II intron [published correction appears in Nature 2001 Nov 1;414(6859):84]. Nature. 2000;404(6781):1018-1021. doi:10.1038/35010029
1.Shampay J, Blackburn EH. Generation of telomere-length heterogeneity in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1988;85(2):534-538. doi:10.1073/pnas.85.2.534
2.Sobinoff AP, Pickett HA. Mechanisms that drive telomere maintenance and recombination in human cancers. Curr Opin Genet Dev. 2020;60:25-30. doi:10.1016/j.gde.2020.02.006
3.Danilevskaya ON, Arkhipova IR, Traverse KL, Pardue ML. Promoting in tandem: the promoter for telomere transposon HeT-A and implications for the evolution of retroviral LTRs. Cell. 1997;88(5):647-655. doi:10.1016/s0092-8674(00)81907-8
4.Villasante A, de Pablos B, Méndez-Lago M, Abad JP. Telomere maintenance in Drosophila: rapid transposon evolution at chromosome ends. Cell Cycle. 2008;7(14):2134-2138. doi:10.4161/cc.7.14.6275
图片取自A Mechanism Leading to Changes in Copy Number Variations Affected by Transcriptional Level Might Be Involved in Evolution, Embryonic Development, Senescence, and Oncogenesis Mediated by Retrotransposons.